3D Bioplotter Research Papers
3D bioprinting of thermosensitive inks based on gelatin, hyaluronic acid, and fibrinogen: reproducibility and role of printing parameters
Thermosensitive inks are considered an attractive option for the 3D bioprinting of different tissue types, yet comprehensive information on their reliability, preparation, and properties remains lacking. This paper addresses this gap by presenting a twofold aim: firstly, characterizing the preparation, rheology, and printing aspects of two inks that have demonstrated success in skeletal muscle tissue engineering both in vitro and in vivo. The first ink is composed of fibrinogen, gelatin, hyaluronic acid, and glycerol, while the second is a sacrificial ink made of gelatin, hyaluronic acid, and glycerol. Secondly, from this analysis, we demonstrate how thermosensitive and multicomponent inks can…
Efficient dual crosslinking of protein–in–polysaccharide bioink for biofabrication of cardiac tissue constructs
Myocardial infarction (MI) is a lethal cardiac disease that causes most of the mortality across the world. MI is a consequence of plaque in the arterial walls of heart, which eventually result in occlusion and ischemia to the myocardial tissues due to inadequate nutrient and oxygen supply. As an efficient alternative to the existing treatment strategies for MI, 3D bioprinting has evolved as an advanced tissue fabrication technique where the cell–laden bioinks are printed layer–by–layer to create functional cardiac patches. In this study, a dual crosslinking strategy has been utilized towards 3D bioprinting of myocardial constructs by using a combination…
Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts
Although allogeneic islet transplantation has been proposed as a therapy for type 1 diabetes, its success rate remains low. Disruption of both extracellular matrix (ECM) and dense vascular network during islets isolation are referred to as some of the main causes of their poor engraftment. Therefore, the recapitulation of the native pancreatic microenvironment and its prompt revascularization should be beneficial for long-term islet survival. In this study, we developed novel bioinks suitable for the microfluidic-assisted multi-material biofabrication of 3D porous pancreatic and vascular structures. The tissue-specific bioactivity was introduced by blending alginate either with pancreatic decellularized extracellular matrix powder (A_ECM)…
Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment
Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our…
3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…
Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions
3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…
Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering
Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…
3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications
Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…
Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration
The blood clotting protein fibrin contains cell-binding domains, providing potential advantage for the fabrication of tissue repair scaffolds and for live cell encapsulation. However, fabrication of fibrin scaffolds with encapsulated cells using three dimensional (3D) printing has proven challenging due to the mechanical difficulties of fabricating protein hydrogel scaffolds with defined microstructure. For example, extrusion based 3D printing of fibrin is generally unfeasible because of the low viscosity of precursor fibrinogen solution. Here we describe a novel technique for bioprinting of fibrin scaffolds by extruding fibrinogen solution into thrombin solution, utilizing hyaluronic acid (HA) and polyvinyl alcohol (PVA) to increase…