3D Bioplotter Research Papers

Displaying all papers about Fibrin (3 results)

Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration

Bioprinting 2016 Volume 5, March 2017, Pages 1-9

The blood clotting protein fibrin contains cell-binding domains, providing potential advantage for the fabrication of tissue repair scaffolds and for live cell encapsulation. However, fabrication of fibrin scaffolds with encapsulated cells using three dimensional (3D) printing has proven challenging due to the mechanical difficulties of fabricating protein hydrogel scaffolds with defined microstructure. For example, extrusion based 3D printing of fibrin is generally unfeasible because of the low viscosity of precursor fibrinogen solution. Here we describe a novel technique for bioprinting of fibrin scaffolds by extruding fibrinogen solution into thrombin solution, utilizing hyaluronic acid (HA) and polyvinyl alcohol (PVA) to increase…

A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels

Advanced Materials 2015 Volume 27, Issue 9, Pages 1607–1614

A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.

Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques

Journal of Materials Science 2002 Volume 37, Issue 15, pp 3107-3116

Scaffolds are of great importance for tissue engineering because they enable the production of functional living implants out of cells obtained from cell culture. These scaffolds require individual external shape and well defined internal structure with interconnected porosity. The problem of the fabrication of prototypes from computer assisted design (CAD) data is well known in automotive industry. Rapid prototyping (RP) techniques are able to produce such parts. Some RP techniques exist for hard tissue implants. Soft tissue scaffolds need a hydrogel material. No biofunctional and cell compatible processing for hydrogels exists in the area of RP. Therefore, a new rapid…