3D Bioplotter Research Papers
Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network
We report herein the fabrication of a pectin-based scaffold (6 wt% pectin, 3 wt% alginate) with high resolution (small-diameter rods), small pores, and interconnected porosity using a low temperature 3D printing process known as freeze-printing. The ability to successfully print natural polymers has been a long-standing challenge in the field of additive manufacturing of polymeric tissue scaffolds. This is due to the slow evaporation rate of the aqueous solvent, which leads to unstable structures. This problem has been addressed by utilizing the fast solidification rate of the freeze-printing process. Scaffolds with a hgresolution (rod-diameter of 83 ± 14 µm), small…
An advanced 3D monofilament biosuture
Sutures are one of the most widely used medical devices with employment in over 12 million procedures per year globally.1 Yet, the ideal suture material does not exist. Over the years scientists and surgeons alike have set out to find a suture material that is biocompatible, easy to handle, does not cause unnecessary tissue damage and creates an optimal environment for wound healing.2 This has led to the discovery of numerous suture materials ranging from silk and catgut in the early 1800s to synthetic polymers such as polylactic acid and polyglycolide that are currently in use.3 Sutures on the market…