3D Bioplotter Research Papers
Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture…
In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells
Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution…
In‐vivo behavior of Si‐hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing
Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone…
Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings
Parathyroid hormone-related protein (107-111) (osteostatin) induces osteogenic effects in osteoblasts in vitro and in regenerating bone in mice and rabbits. In this study we used osteoblastic MC3T3-E1 cell cultures to evaluate and compare the bioactivity of this peptide either adsorbed or covalently bound (by its C-terminus) to Si-doped hydroxyapatite (Si-HA) scaffolds after organic (-NH2) functionalization. By these means osteostatin can be locally released or kept anchored to the scaffold surface. This was confirmed by chemical analysis and by testing the efficiency of osteostatin-loaded Si-HA scaffolds (placed in Transwell chambers) in healing a scratch wound in mouse pluripotent mesenchymal C3H10T1/2 cells.…
Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell…