3D Bioplotter Research Papers
Development of a 3D Printing Strategy for Completely Polymeric Neural Interfaces Fabrication
The fabrication of neural interfaces (NIs) typically relies nowadays on the implementation of complex, expensive, and time-consuming photolithographic processes. Metals and polymers are the materials currently used to fabricate NIs. Conductive polymers could be an alternative to metals to enhance the biocompatibility of the devices. Additive manufacturing techniques provide an easier and low-cost approach to process and finely tuning the geometrical and morphological features of polymers. Here, we propose a 3D printing strategy for the fabrication of completely polymeric neural interfaces, based on extrusion printing. The materials have been chosen to enhance the biocompatibility of the devices. PDMS has been…
Improved Physiochemical Properties of Chitosan@PCL Nerve Conduits by Natural Molecule Crosslinking
Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a strong effort has been made to envision an engineered graft to tackle this issue. In our recent work, we presented a novel design of porous/3D-printed chitosan/poly-ε-caprolactone conduits, coupling freeze drying and additive manufacturing technologies to yield conduits with good structural properties. In this work, we studied genipin crosslinking as strategy to improve the physiochemical properties of our…