3D Bioplotter Research Papers
Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels
Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of…
Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties
Biology uses various cross-linking mechanisms to tailor material properties, and this is inspiring technological efforts to couple independent cross-linking mechanisms to create hydrogels with complex mechanical properties. Here, it is reported that a hydrogel formed from a single polysaccharide can be triggered to reversibly switch cross-linking mechanisms and switch between elastic and viscoelastic properties. Specifically, the pH-responsive self-assembling aminopolysaccharide chitosan is used. Under acidic conditions, chitosan is polycationic and can be electrostatically cross-linked by sodium dodecyl sulfate (SDS) micelles to confer viscoelastic and self-healing properties. Under basic conditions, chitosan becomes neutral, the electrostatic SDS–chitosan interactions are no longer operative, and…