3D Bioplotter Research Papers

Displaying all papers by H. Sardon (2 results)

Nearly Perfect 3D Structures Obtained by Assembly of Printed Parts of Polyamide Ionene Self-Healing Elastomer

ACS Applied Polymer Materials 2020 Volume 2, Issue 11, Pages 4352-4359

Herein, we demonstrate 3D printing of an elastomeric imidazolium polyamide-ionene which exhibits intrinsic shape-memory (SM) and self-healing (SH) character, reporting optimized printing conditions and rheological properties. This study shows the suitability of this material for 3D-printing via fused deposition modeling. The 3D-printed objects retain elasticity and SM when external force is applied, and the elastomeric character is quantified via mechanical testing. This work highlights the benefits of SH behavior as a design feature combatting inherent material weaknesses or insufficient adhesion at seams and layer junctions. DFT calculations confirmed the importance of ionic interactions and H-bonding in the SH process.

Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels

Chemistry of Materials 2021 Volume 33, Issue 18, 7194-7202

The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients’ needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the…