3D Bioplotter Research Papers

Displaying all papers by J. Kohn (4 results)

Tyrosol-Derived Biodegradable Inks with Tunable Properties for 3D Printing

ACS Biomaterials Science & Engineering 2021 Volume 7, Issue 9, Paper 4454-4462

Three-dimensional (3D) printing has emerged as a valuable tool in medicine over the past few decades. With a growing number of applications using this advanced processing technique, new polymer libraries with varied properties are required. Herein, we investigate tyrosol-based poly(ester-arylate)s as biodegradable inks in fused deposition modeling (FDM). Tyrosol-based polycarbonates and polyesters have proven to be useful biomaterials due to their excellent tunability, nonacidic degradation components, and the ability to be functionalized. Polymers are synthesized by polycondensation between a custom diphenol and commercially available diacids. Thermal properties, degradation rates, and mechanical properties are all tunable based on the diphenol and…

Achieving Molecular Orientation in Thermally Extruded 3D Printed Objects

Biofabrication 2019 Volue 11, Number 4, Article 045004

3D printing is used to fabricate tissue scaffolds. The polymer chains in these objects are typically unoriented. The mechanical properties of these scaffolds can be significantly enhanced by proper alignment of the polymer chains. But, post-processing routes to increase orientation can be limited by the geometry of the printed object. Here we show that it is possible to orient the polymer chains during printing by optimizing the printing parameters to take advantage of the flow characteristics of the polymer. This is demonstrated by printing a polymeric scaffold for meniscus regeneration using poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate), poly(DTD DD). Alignment of the polymer…

A method to deliver patterned electrical impulses to Schwann cells cultured on an artificial axon

Neural Regeneration Research 2019 Volume 14, Issue 6, Pages 1052-1059

Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however, that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses…

Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds

Biomaterials Science 2019 Volume 7, Pages 560-570

In this work, we synthesized a novel polymeric biomaterial platform with tunable functionalizability for extrusion-based 3D printing. Biodegradable polymers were synthesized using 4-hydroxyphenethyl 2-(4-hydroxyphenyl)acetate (HTy), which is derived from Tyrosol and 2-(4-hydroxyphenyl)acetic acid. p-Phenylenediacetic acid (PDA) was introduced to enhance crystallinity. To enable functionalizability without deteriorating printability, glutamic acid derivatives were introduced into the polymer design, forming copolymers including poly(HTy-co-45%PDA-co-5%Gluhexenamide ester) (HP5GH), poly(HTy-co-45%PDA-co-5%Glupentynamide ester) (HP5GP), and poly(HTy-co-45%PDA-co-5%BocGlu ester) (HP5BG). The resulting polymers have: two melting temperatures (125–131 °C and 141–147 °C), Young’s moduli of 1.9–2.4 GPa, and print temperatures of 170–190 °C. The molecular weight (Mw) loss due to hydrolytic…