3D Bioplotter Research Papers

Displaying all papers by J. Yin (3 results)

3D Printing-Electrospinning Hybrid Nanofibrous Scaffold as LEGO-Like Bricks for Modular Assembling Skeletal Muscle-on-a-Chip Functional Platform

Advanced Fiber Materials 2024

Organ-on-a-chip stands as a pivotal platform for skeletal muscle research while constructing 3D skeletal muscle tissues that possess both macroscopic and microscopic structures remains a considerable challenge. This study draws inspiration from LEGO-like assembly, employing a modular approach to construct muscle tissue that integrates biomimetic macroscopic and microscopic structures. Modular LEGO-like hybrid nanofibrous scaffold bricks were fabricated by the combination of 3D printing and electrospinning techniques. Skeletal muscle cells cultured on these modular scaffold bricks exhibited a highly orientated nanofibrous structure. A variety of construction of skeletal muscle tissues further enabled development by various assembling processes. Moreover, skeletal muscle-on-a-chip (SMoC)…

3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction

Materials Today Bio 2022 Volume 16, Article 100361

High-density polyethylene (HDPE) is a promising material for the development of scaffold implants for auricle reconstruction. However, preparing a personalized HDPE auricle implant with favorable bioactive and antibacterial functions to promote skin tissue ingrowth is challenging. Herein, we present 3D-printed HDPE auricle scaffolds with satisfactory pore size and connectivity. The layer-by-layer (LBL) approach was applied to achieve the improved bioactive and antibacterial properties of these 3D printed scaffolds. The HDPE auricle scaffolds were fabricated using an extrusion 3D printing approach, and the individualized macrostructure and porous microstructure were both adjusted by the 3D printing parameters. The polydopamine (pDA) coating method…

2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction

Advanced Science 2020 Volume 7, Issue 2, Article 1901511

The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene…