3D Bioplotter Research Papers
Multi-material 3D bioprinting of human stem cells to engineer complex human corneal structures with stroma and epithelium
Developing cost-effective and scalable multi-material bioprinting technologies that combine multiple cell types is crucial to produce biomimetic, complex human tissue substitutes and overcome the scarcity of transplantable tissues. These technological developments can revolutionize the treatment of several conditions currently dependent on donor tissues, such as corneal blindness. Here, corneal structures consisting of two layers, stroma and epithelium, were manufactured by extrusion-based 3D bioprinting. To take steps towards clinical translation of bioprinting, three clinically compatible hyaluronic acid based bioinks were combined with human adipose tissue and induced pluripotent stem cell derived cell types. Each of the three bioinks was customized to…
Compartmentalized 3D bioprinting of the limbal niche with distinct hPSC-LSC subpopulations for corneal disease modeling
Limbal epithelial stem cells (LSCs) are essential for corneal epithelium regeneration and visual acuity. The limbal niche’s physicochemical properties regulate LSC function, but their role is not fully understood. Developing in vitro models that mimic the native niche can enhance our understanding of niche functions, despite the challenges of niche complexity. In this study, we created a 3D bioprinted limbal niche model using a hybrid approach that combines two human pluripotent stem cell-derived LSC (hPSC-LSC) subpopulations (p63+ and ABCG2+ cells) within hyaluronic acid (HA)-based bioinks and a stiff polyacrylamide (PA) gel scaffold produced by conventional gel casting. We analyzed the…
Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering
Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor…