3D Bioplotter Research Papers

Displaying all papers by L. Ricotti (2 results)

3D bioprinting of thermosensitive inks based on gelatin, hyaluronic acid, and fibrinogen: reproducibility and role of printing parameters

Bioprinting 2024 Volume 39, Article e00338

Thermosensitive inks are considered an attractive option for the 3D bioprinting of different tissue types, yet comprehensive information on their reliability, preparation, and properties remains lacking. This paper addresses this gap by presenting a twofold aim: firstly, characterizing the preparation, rheology, and printing aspects of two inks that have demonstrated success in skeletal muscle tissue engineering both in vitro and in vivo. The first ink is composed of fibrinogen, gelatin, hyaluronic acid, and glycerol, while the second is a sacrificial ink made of gelatin, hyaluronic acid, and glycerol. Secondly, from this analysis, we demonstrate how thermosensitive and multicomponent inks can…

A Novel 3D-Printed/Porous Conduit with Tunable Properties to Enhance Nerve Regeneration Over the Limiting Gap Length

Advanced Materials Technologies 2023 Volume 8, Issue 17, Article 2300136

Engineered grafts constitute an alternative to autologous transplant for repairing severe peripheral nerve injuries. However, current clinically available solutions have substantial limitations and are not suited for the repair of long nerve defects. A novel design of nerve conduit is presented here, which consists of a chitosan porous matrix embedding a 3D-printed poly-ε-caprolactone mesh. These materials are selected due to their high biocompatibility, safe degradability, and ability to support the nerve regeneration process. The proposed design allows high control over geometrical features, pores morphology, compression resistance, and bending stiffness, yielding tunable and easy-to-manipulate grafts. The conduits are tested in chronic…