3D Bioplotter Research Papers
Optimization of 3D Printing Parameters of Polylactic-Co-Glycolic Acid-Based Biodegradable Antibacterial Materials Using Fused Deposition Modeling
A high incidence of ureteral diseases was needed to find better treatments such as implanting ureteral stents. The existing ureteral stents produced a series of complications such as bacterial infection and biofilm after implantation. The fused deposition modeling (FDM) of 3D printing biodegradable antibacterial ureteral stents had gradually become the trend of clinical treatment. But it was necessary to optimize the FDM 3D printing parameters of biodegradable bacteriostatic materials to improve the precision and performance of manufacturing. In this study, polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and nanosilver (AgNP) were mixed by the physical blending method, and the 3D printing parameters…
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…