3D Bioplotter Research Papers

Displaying all papers by M. C. Hersam (2 results)

Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites

Nano Letters 2018 Volume 18, Issue 6, 3488-3493

Hexagonal boron nitride (hBN) is a thermally conductive yet electrically insulating two-dimensional layered nanomaterial that has attracted significant attention as a dielectric for high-performance electronics in addition to playing a central role in thermal management applications. Here, we report a high-content hBN-polymer nanocomposite ink, which can be 3D printed to form mechanically robust, self-supporting constructs. In particular, hBN is dispersed in poly(lactic-co-glycolic acid) and 3D printed at room temperature through an extrusion process to form complex architectures. These constructs can be 3D printed with a composition of up to 60% vol hBN (solids content) while maintaining high mechanical flexibility and…

Three Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications

ACS Nano 2015 Volume 9, Issue 4, Pages 4636–4648

The exceptional properties of graphene enable applications in electronics, optoelectronics, energy storage, and structural composites. Here we demonstrate a 3D printable graphene (3DG) composite consisting of majority graphene and minority polylactide-co-glycolide, a biocompatible elastomer, 3D-printed from a liquid ink. This ink can be utilized under ambient conditions via extrusion-based 3D printing to create graphene structures with features as small as 100 μm composed of as few as two layers (10 cm thick object). The resulting 3DG material is mechanically robust and flexible while retaining electrical conductivities greater than 800 S/m, an order of magnitude increase over previously reported 3D-printed carbon…