3D Bioplotter Research Papers

Displaying all papers by M. Grayson (2 results)

A Percolation Model for Piezoresistivity in Conductor–Polymer Composites

Advanced Theory and Simulations 2019 Volume 2, Issue 2, Article 1800125

Insulating polymer composites with conductive filler particles are attractive for sensor applications due to their large piezoresistive response. Composite samples composed of a polymer matrix filled with particles of doped semiconductor that gives a piezoresistive response that is 105 times larger than that of bulk semiconductor sensors are prepared here. The piezoresistance of such composite materials is typically described by using a tunneling mechanism. However, it is found that a percolation description not only fits prior data better but provides a much simpler physical mechanism for the more flexible and soft polymer composite prepared and tested in this study. A…

3D extruded composite thermoelectric threads for flexible energy harvesting

Nature Communications 2019 Volume 10, Article 5590

Whereas the rigid nature of standard thermoelectrics limits their use, flexible thermoelectric platforms can find much broader applications, for example, in low-power, wearable energy harvesting for internet-of-things applications. Here we realize continuous, flexible thermoelectric threads via a rapid extrusion of 3D-printable composite inks (Bi2Te3 n- or p-type micrograins within a non-conducting polymer as a binder) followed by compression through a roller-pair, and we demonstrate their applications in flexible, low-power energy harvesting. The thermoelectric power factors of these threads are enhanced up to 7 orders-of-magnitude after lateral compression, principally due to improved conductivity resulting from reduced void volume fraction and partial…