3D Bioplotter Research Papers
3D Micro‐Extrusion of Graphene‐based Active Electrodes: Towards High‐Rate AC Line Filtering Performance Electrochemical Capacitors
A facile one-step printing process by 3D micro-extrusion affording binder-free thermally reduced graphene oxide (TRGO) based electrochemical capacitors (ECs) that display high-rate performance is presented. Key intermediates are binder-free TRGO dispersion printing inks with concentrations up to 15 g L−1. This versatile printing technique enables easy fabrication of EC electrodes, useful in both aqueous and non-aqueous electrolyte systems. The as-prepared TRGO material with high specific surface area (SSA) of 593 m2 g−1 and good electrical conductivity of ≈16 S cm−1 exhibits impressive charge storage performances. At 100 and 120 Hz, ECs fabricated with TRGO show time constants of 2.5 ms…
Layered Gradient Nonwovens of In Situ Crosslinked Electrospun Collagenous Nanofibers Used as Modular Scaffold Systems for Soft Tissue Regeneration
In a versatile modular scaffold system, gradient nonwovens of in situ crosslinked gelatin nanofibers (CGN), fabricated by reactive electrospinning, are laminated with perforated layers and nonwovens of thermoplastic non-crosslinked biodegradable polyesters. The addition of glyoxal to a gelatin solution in a non-toxic solvent mixture consisting of acetic acid, ethyl acetate, and water (5:3:2 w/w/w) enables the in situ crosslinking of gelatin nanofibers during electrospinning. The use of this fluorine-free crosslinking system eliminates the need of post-treatment crosslinking and purification steps typical for conventional CGN scaffolds. The slowly progressing crosslinking of the dissolved gelatin in the presence of glyoxal increases the…
Emulsifier-Free Graphene Dispersions with High Graphene Content for Printed Electronics and Freestanding Graphene Films
A novel and highly versatile synthetic route for the production of functionalized graphene dispersions in water, acetone, and isopropanol (IPA), which exhibit long-term stability and are easy to scale up, is reported. Both graphene functionalization (wherein the oxygen content can be varied from 4 to 16 wt%) and dispersion are achieved by the thermal reduction of graphite oxide, followed by a high-pressure homogenization (HPH) process. For the first time, binders, dispersing agents, and reducing agents are not required to produce either dilute or highly concentrated dispersions of single graphene sheets with a graphene content of up to 15 g L−1.…
Valproate release from polycaprolactone implants prepared by 3D-bioplotting
In this study we examined the release kinetics of valproate from polycaprolactone (PCL) implants constructed for local antiepileptic therapy. The PCL implants were produced with a novel 3D-Bioplotting technology. Release kinetics were determined by superfusion of these implants. Valproate was measured in the superfusate fractions with high pressure liquid chromatography (HPLC). The HPLC measurements were linear over a concentration range of 10-500 g/mL for valproate and the limit of quantification was found to be 9 g/mL. The HPLC method used is simple, accurate and sensitive. Within the first day, valproate (10%w/w)-PCL implants released already 77% of the maximum possible liberated…