3D Bioplotter Research Papers
3D printing of architectured graphene-based aerogels by cross-linking GO inks with adjustable viscoelasticity for energy storage devices
Three-dimensional (3D) functional graphene-based architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics. Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by micro-extrusion printing. In this work, ultra-low-concentration graphene oxide (GO) inks of ~ 15 mg·ml−1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking (direct ink writing). The rheological behavior of the GO strategy by cations, which is the lowest concentration to achieve direct ink writing inks, could be adjusted from 1×104 to 1×105 Pa·s−1 with different concentrations of cations due to strong…
Development of mechanical characterization method of hydrogel scaffolds using synchrotron propagation-based imaging
Hydrogel-based scaffolds have been widely used in soft tissue regeneration due to their biocompatible and tissue-like environment for maintaining cellular functions and tissue regeneration. Understanding the mechanical properties and internal microstructure of hydrogel-based scaffold, once implanted, is imperative in many tissue engineering applications and longitude studies. Notably, this has been challenging to date as various conventional characterization methods by, for example, mechanical testing (for mechanical properties) and microscope (for internal microstructure) are destructive as they require removing scaffolds from the implantation site and processing samples for characterization. Synchrotron propagation-based imaging – computed tomography (PBI-CT) is feasible and promising for non-destructive…
Low-density tissue scaffold imaging by synchrotron radiation propagation-based imaging computed tomography with helical acquisition mode
Visualization of low-density tissue scaffolds made from hydrogels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydrogel scaffolds. The influence of key imaging parameters on the image quality of hydrogel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on…