3D Bioplotter Research Papers

Displaying all papers by N. Rodriguez (2 results)

3D Printing of chewable oral tablets using drug nanosuspension inks: an experimental and machine learning study

Virtual and Physical Prototyping 2025 Volume 20, Issue 1, Article 2517811

3D printing enables precise control over tablet design and drug release, but challenges remain in optimising ink formulation, ensuring printability, and predicting final tablet properties. This study addresses the need for data-driven strategies in fabricating chewable tablets and tests the hypothesis that integrating rheology with machine learning (ML) enables predictive control over print quality and dosage form performance. We developed drug nanosuspension inks with varying water content (85–20 wt.%) and identified 40% as optimal, balancing shear-thinning behaviour, yield stress, and shear recovery for consistent extrusion. Analytical models predicted strut diameter (D) based on printing parameters—pressure (P), speed (v), and nozzle…

Effect of particle shape on rheology and printability of highly filled reactive inks for direct ink writing

Progress in Additive Manufacturing 2023 Volume 8, Pages 1573–1585

Highly filled inks including a reactive titanium–boron composite powder (with Ti·2B composition), a polymeric binder, and a solvent mixture combining the main solvent with a plasticizer and surfactant, are prepared for material extrusion-based printing. To determine the effect of particle shape and loading on rheology and printability of the inks, both spherical and irregularly shaped powders with the same composition and close particle sizes are manufactured by high-energy milling and used to formulate 80%, 90%, and 95% (wt.) inks. All ink formulations show shear thinning and shear recovery behavior. The degree of shear thinning decreases with increased particle loading, and…

Titanium Boron PLGA