3D Bioplotter Research Papers
Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration
Advances in 3D bioprinting allows not only controlled deposition of cells or cell-laden hydrogels but also flexibility in creating constructs that match the anatomical features of the patient. This is especially the case for reconstructing the pinna (ear), which is a large feature of the face and made from elastic cartilage that primarily relies on diffusion for nutrient transfer. The selection of cell lines for reconstructing this cartilage becomes a crucial step in clinical translation. Chondrocytes and mesenchymal stem cells are both studied extensively in the area of cartilage regeneration as they are capable of producing cartilage in vitro. However,…
3D hybrid printing platform for auricular cartilage reconstruction
As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the…