3D Bioplotter Research Papers

Displaying all papers by S. Duan (3 results)

Silver nanowire-based stretchable strain sensors with hierarchical wrinkled structures

Sensors and Actuators A: Physical 2022 Volume 343, Article 113653

As an engineering frontier, highly stretchable sensors are widely applied in many fields, such as human motion detection, personal healthcare monitoring, and human-machine interactions. In this study, novel silver nanowire (AgNW)-based stretchable sensors with hierarchical wrinkled structures were fabricated through a two-step process, namely water-induced swelling and AgNW deposition. As highly soluble additives, sodium chloride particles were incorporated into the elastomer matrix. Upon soaking in dopamine aqueous solution, significant swelling was introduced onto the elastomer substrate. The dopamine deposition is accompanied with the swelling process, which endows the sample surface with ultra-hydrophilicity. Additionally, the dopamine-modified swollen samples “capture” the nanowires…

Highly Conductive Silicone Elastomers via Environment-Friendly Swelling and In Situ Synthesis of Silver Nanoparticles

Advanced Materials Interfaces 2021 Volume 8, Issue 9, Article 2100137

Flexible and stretchable conductors are crucial components for next-generation flexible devices. Wrinkled structures often have been created on such conductors by depositing conductive materials on the pre-stretched or organic solvent swollen samples. Herein, water swelling is first proposed to generate the wrinkled structures on silicone elastomers. By immersing silicone/sugar hybrid in water, a significant amount of swelling occurs as a result of osmosis and capillary interactions with the sugar and silicone matrix. Considering the drastic swelling effect and controllable swelling ratio, water swelling is used to replace the conventional pre-stretching and organic solvent swelling to fabricate stretchable conductors. In situ…

Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network

ACS Applied Materials & Interfaces 2016 Volume 8, Issue 3, Pages 2187–2192

The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher…