3D Bioplotter Research Papers
4D Printing with Mechanically Robust, Thermally Actuating Hydrogels
A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the “dynamic” hydrogel ink alongside other static materials.
Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine
Carrageenan/epoxy amine ionic-covalent entanglement hydrogels were fabricated on a 3D printer. The thermal gel transition behaviour of the biopolymer kappa-carrageenan was exploited to fix the shape of the patterned ink until a covalent polymer network formed by epoxy amine addition chemistry. The printed hydrogels display a work of extension value of 1.4 ± 0.3 MJ m−3.
Three-Dimensional Printing Fiber Reinforced Hydrogel Composites
An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to…