3D Bioplotter Research Papers
Development of a 3D Printing Strategy for Completely Polymeric Neural Interfaces Fabrication
The fabrication of neural interfaces (NIs) typically relies nowadays on the implementation of complex, expensive, and time-consuming photolithographic processes. Metals and polymers are the materials currently used to fabricate NIs. Conductive polymers could be an alternative to metals to enhance the biocompatibility of the devices. Additive manufacturing techniques provide an easier and low-cost approach to process and finely tuning the geometrical and morphological features of polymers. Here, we propose a 3D printing strategy for the fabrication of completely polymeric neural interfaces, based on extrusion printing. The materials have been chosen to enhance the biocompatibility of the devices. PDMS has been…
A Novel 3D-Printed/Porous Conduit with Tunable Properties to Enhance Nerve Regeneration Over the Limiting Gap Length
Engineered grafts constitute an alternative to autologous transplant for repairing severe peripheral nerve injuries. However, current clinically available solutions have substantial limitations and are not suited for the repair of long nerve defects. A novel design of nerve conduit is presented here, which consists of a chitosan porous matrix embedding a 3D-printed poly-ε-caprolactone mesh. These materials are selected due to their high biocompatibility, safe degradability, and ability to support the nerve regeneration process. The proposed design allows high control over geometrical features, pores morphology, compression resistance, and bending stiffness, yielding tunable and easy-to-manipulate grafts. The conduits are tested in chronic…
Improved Physiochemical Properties of Chitosan@PCL Nerve Conduits by Natural Molecule Crosslinking
Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a strong effort has been made to envision an engineered graft to tackle this issue. In our recent work, we presented a novel design of porous/3D-printed chitosan/poly-ε-caprolactone conduits, coupling freeze drying and additive manufacturing technologies to yield conduits with good structural properties. In this work, we studied genipin crosslinking as strategy to improve the physiochemical properties of our…