3D Bioplotter Research Papers

Displaying all papers by S. Standoft (2 results)

Alginate and Nanocellulose Dressings With Extract From Salmon Roe Reduce Inflammation and Accelerate Healing of Porcine Burn Wounds

Journal of Burn Care & Research 2023 Volume 44, Issue 5, Pages 1140-1149

Partial-thickness thermal burn wounds are characterized by a prolonged inflammatory response, oxidative stress, tissue damage, and secondary necrosis. An optimal dressing for burn wounds would reduce inflammation and oxidative stress while providing a moist, absorbent, and protective cover. We have developed an extract from unfertilized salmon roe containing components with potential anti-inflammatory and antioxidative properties, called HTX. HTX has been combined with alginate from brown algae and nanocellulose from tunicates, and 3D printed into a solid hydrogel wound dressing called Collex. Here, Collex was tested on partial thickness burn wounds in Göttingen minipigs compared to Jelonet, and a variant of…

Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery

Biomedical Materials 2021 Volume 16, Number 4, Article 045046

The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designing in vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting…