3D Bioplotter Research Papers
Alginate and Nanocellulose Dressings With Extract From Salmon Roe Reduce Inflammation and Accelerate Healing of Porcine Burn Wounds
Partial-thickness thermal burn wounds are characterized by a prolonged inflammatory response, oxidative stress, tissue damage, and secondary necrosis. An optimal dressing for burn wounds would reduce inflammation and oxidative stress while providing a moist, absorbent, and protective cover. We have developed an extract from unfertilized salmon roe containing components with potential anti-inflammatory and antioxidative properties, called HTX. HTX has been combined with alginate from brown algae and nanocellulose from tunicates, and 3D printed into a solid hydrogel wound dressing called Collex. Here, Collex was tested on partial thickness burn wounds in Göttingen minipigs compared to Jelonet, and a variant of…
Mechanistic understanding of the performance of personalized 3D-printed cardiovascular polypills: A case study of patient-centered therapy
The 3D printing has become important in drug development for patient-centric therapy by combining multiple drugs with different release characteristics in a single polypill. This study explores the critical formulation and geometric variables for tailoring the release of Atorvastatin and Metoprolol as model drugs in a polypill when manufactured via pressure-assisted-microextrusion 3D printing technology. The effects of these variables on the extrudability of printing materials, drug release and other quality characteristics of polypills were studied employing a definitive screening design. The extrudability of printing materials was evaluated in terms of flow pressure, non-recoverable strain, compression rate, and elastic/plastic flow. The…