3D Bioplotter Research Papers

Displaying all papers by T. H. Silva (3 results)

3D bioactive ionic liquid-based architectures: An anti-inflammatory approach for early-stage osteoarthritis

Acta Biomaterialia 2023

3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA’s early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs…

Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering

Materials Science and Engineering: C 2017 Volume 78, 1 September 2017, Pages 787–795

Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using…

Hierarchical Fibrillar Scaffolds Obtained by Non-conventional Layer-By-Layer Electrostatic Self-Assembly

Advanced Healthcare Materials 2013 Volume 2, Issue 3, pages 422–427

A new application of layer-by-layer assembly is presented, able to create nano/micro fibrils or nanocoatings inside 3D scaffolds using non-fibrillar polyelectrolytes for tissue-engineering applications. This approach shows promise for developing advanced scaffolds with controlled nano/micro environments, and nature and architectures similar to the natural extracellular matrix, leading to improved biological performance.