3D Bioplotter Research Papers
Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering
Osteochondral tissue damage is a serious concern, with even minor cartilage damage dramatically increasing an individual’s risk of osteoarthritis. Therefore, there is a need for an early intervention for osteochondral tissue regeneration. 3D printing is an exciting method for developing novel scaffolds, especially for creating biological scaffolds for osteochondral tissue engineering. However, many 3D printing techniques rely on creating a lattice structure, which often demonstrates poor cell bridging between filaments due to its large pore size, reducing regenerative speed and capacity. To tackle this issue, a novel biphasic scaffold was developed by a combination of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene-terephthalate) (PEGT/PBT)…
Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints
Background: Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints. Materials and methods: Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated. Results: Rapid prototyping…
Cartilage Tissue Engineering Using Smart Scaffold Design & Advanced Bio Manufacturing
Articular cartilage has a limited regenerative capacity. Tissue engineering strategies adopting seeding and differentiation of individual chondrocytes on porous 3D scaffolds of clinically relevant size remains a considerable challenge. A well documented method to produce small samples of differentiated cartilage tissue in vitro is via micro-mass (pellet) culture, whereby, high concentrations of chondrocytes coalesce to form. a spherical tissue pellet. However, pellet culture techniques are not applied clinically as it is only possible to produce small amounts of tissue (1–2mm). The aims of this study were to develop a method for mass-production of pellets, and investigate whether an alternative “pellet…