3D Bioplotter Research Papers
3-Dimensional Bioprinting of a Tendon Stem Cell–Derived Exosomes Loaded Scaffold to Bridge the Unrepairable Massive Rotator Cuff Tear
Background: Unrepairable massive rotator cuff tears (UMRCTs) are challenging to surgeons owing to the severely retracted rotator cuff musculotendinous tissues and extreme defects in the rotator cuff tendinous tissues. Purpose: To fabricate a tendon stem cell–derived exosomes loaded scaffold (TSC-Exos-S) and investigate its effects on cellular bioactivity in vitro and repair in a rabbit UMRCT model in vivo. Study Design: Controlled laboratory study. Methods: TSC-Exos-S was fabricated by loading TSC-Exos and type 1 collagen (COL-I) into a 3-dimensional bioprinted and polycaprolactone (PCL)–based scaffold. The proliferation, migration, and tenogenic differentiation activities of rabbit bone marrow stem cells (BMSCs) were evaluated in…
Efficiency assessment of wood and cellulose-based optical elements for terahertz waves
Polarized THz time domain spectroscopy was used to study the anisotropic properties of wood-based materials for potential optical elements in the THz range, such as half-wave and quarter-wave plates. Wood samples of different species and sample thickness were studied experimentally showing high birefringence but rather high absorption. We elaborate on two approaches to optimize the optical properties for use as wave plates and assess them based on a figure of merit describing their efficiency as a function of birefringence and absorption. The first approach is to dry the wood samples, which significantly improves the efficiency of wave plates. The second…