3D Bioplotter Research Papers
Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering
Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350–400 μm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in…
The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique
Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell-loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano-hydroxyapatite (na-HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na-HA bioscaffolds were printed using 3D…
Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the…