3D Bioplotter Research Papers
Cav3.3-mediated endochondral ossification in a three-dimensional bioprinted GelMA hydrogel
The growth plate (GP) is a crucial tissue involved in skeleton development via endochondral ossification (EO). The bone organoid is a potential research model capable of simulating the physiological function, spatial structure, and intercellular communication of native GPs. However, mimicking the EO process remains a key challenge for bone organoid research. To simulate this orderly mineralization process, we designed an in vitro shCav3.3 ATDC5-loaded gelatin methacryloyl (GelMA) hydrogel model and evaluated its bioprintability for future organoid construction. In this paper, we report the first demonstration that the T-type voltage-dependent calcium channel (T-VDCC) subtype Cav3.3 is dominantly expressed in chondrocytes and…