3D Bioplotter Research Papers
Dexamethasone and ciprofloxacin release and bio-efficacy after autoclavation of 3D printed external ear canal implants
Patients with chronic stenosis of their ear canal may benefit from additively manufactured individualized drug containing external ear canal implants (EECI) [1] that keep the ear canal open and support the healing of the affected tissue. To guarantee the safety of the patients, the sterilization of implants is important. Autoclaving is a fast and well-established sterilization method, but the heat of the process may damage any drug contained within the implants. To evaluate the suitability of autoclaving EECIs, we tested samples for bio-efficacy and the released drug amount within 3 days.
Individualized, Additively Manufactured Drug-Releasing External Ear Canal Implant for Prevention of Postoperative Restenosis: Development, In Vitro Testing, and Proof of Concept in an Individual Curative Trial
Postoperative restenosis in patients with external ear canal (EEC) atresia or stenosis is a common complication following canaloplasty. Our aim in this study was to explore the feasibility of using a three dimensionally (3D)-printed, patient-individualized, drug ((dexamethasone (DEX)), and ciprofloxacin (cipro))-releasing external ear canal implant (EECI) as a postoperative stent after canaloplasty. We designed and pre-clinically tested this novel implant for drug release (by high-performance liquid chromatography), biocompatibility (by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay), bio-efficacy (by the TNF-α (tumor necrosis factor-alpha)-reduction test (DEX) and inhibition zone test (for cipro)), and microbial contamination (formation of turbidity or sediments in culture medium).…