3D Bioplotter Research Papers
Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders
3D ink-extrusion of powders followed by sintering is an emerging additive manufacturing method capable of creating metallic microlattices. Here, we study the creation of hierarchically porous Fe or Ni scaffolds by 3D extrusion of 0/90° lattices from inks consisting of fine oxide powders (Fe2O3 or NiO, < 3 µm), coarse space-holder particles (CuSO4, < 45 µm) and a polymer binder within a solvent. After space-holder leaching and debinding of the lattices, a sintering step densifies the metallic Fe or Ni powders created by oxide reduction with H2, while maintaining the larger pores templated by the space-holder particles within the printed…
3D-printing porosity: A new approach to creating elevated porosity materials and structures
We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6–94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7–742.2%. Studies with adult human mesenchymal…