3D Bioplotter Research Papers
Double-network structure sponge with enhanced mechanical properties, procoagulant potential, and 3D printability for acute hemorrhage
In pre-hospital care, achieving rapid and effective hemostasis for arterial rupture and visceral perforation wounds remains a critical challenge. Herein, we have developed a macroporous sponge with double-network structure using foaming technique, chemical and physical crosslinking reactions, and lyophilization. The prepared sponge not only demonstrates outstanding water absorption and water-triggered shape recovery capacity, but also exhibits significantly enhanced mechanical properties due to the construction of double-network structure. Simultaneously, the sponge shortens blood clotting time (from 1354.3 ± 41 s to 473.0 ± 28 s) by concentrating blood components and regulating coagulation pathways. Particularly, the sponge possesses excellent 3D printability and…
3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression
Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries.…