3D Bioplotter Research Papers

Displaying all papers about Temporomandibular joint disc (2 results)

Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds

Journal of Dental Research 2016 Volume 95, Issue 7, Pages 800-807

The temporomandibular joint (TMJ) disc is a heterogeneous fibrocartilaginous tissue positioned between the mandibular condyle and glenoid fossa of the temporal bone, with important roles in TMJ functions. Tissue engineering TMJ discs has emerged as an alternative approach to overcoming limitations of current treatments for TMJ disorders. However, the anisotropic collagen orientation and inhomogeneous fibrocartilaginous matrix distribution present challenges in the tissue engineering of functional TMJ discs. Here, we developed 3-dimensional (3D)–printed anatomically correct scaffolds with region-variant microstrand alignment, mimicking anisotropic collagen alignment in the TMJ disc and corresponding mechanical properties. Connective tissue growth factor (CTGF) and transforming growth factor…

Bioactive scaffolds integrated with micro-precise spatiotemporal delivery and in vivo degradation tracking for complex tissue regeneration

Engineered Regeneration 2025 Volume 6, Pages 34-44

Three-dimensional (3D) printing has evolved to incorporate controlled delivery systems to guide the regeneration of complex tissues, with limited clinical translation. The challenges include the limited precision in spatiotemporal delivery and poorly understood in vivo scaffold degradation rates. Here, we report auspicious preclinical outcomes in the functional regeneration of temporomandibular joint (TMJ) discs of mini-pigs. TMJ disc has been an extremely challenging target for regenerative engineering given the uniquely heterogeneous matrix distribution and region-variant anisotropic orientation. We optimally implemented advanced 3D printing technologies with micro-precise spatiotemporal delivery to build anatomically correct, bioactive scaffolds with native-like regionally variant microstructure and mechanical…