3D Bioplotter Research Papers

Displaying all papers by C. S. R. Freire (4 results)

Biobased hydrogel bioinks of pectin, nanocellulose and lysozyme nanofibrils for the bioprinting of A375 melanoma cell-laden 3D in vitro platforms

International Journal of Biological Macromolecules 2024 Volume 282, Part 5, Article 136958

Melanoma is one of the most aggressive types of skin cancer, and the need for advanced platforms to study this disease and to develop new treatments is rising. 3D bioprinted tumor models are emerging as advanced tools to tackle these needs, with the design of adequate bioinks being a fundamental step to address this challenging process. Thus, this work explores the synergy between two biobased nanofibers, nanofibrillated cellulose (NFC) and lysozyme amyloid nanofibrils (LNFs), to create pectin nanocomposite hydrogel bioinks for the 3D bioprinting of A375 melanoma cell-laden living constructs. The incorporation of LNFs (5, 10 or 15 wt%) on a…

Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications

Nanomaterials 2022 Volume 12, Article 2190

In this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.5% (w/v) CaCl2 to formulate A-LNF inks. These inks exhibit proper shear-thinning behavior and good recovery properties (~90%), with the pre-crosslinking step playing a crucial role. A-LNF fully crosslinked hydrogels (with 2% (w/v) CaCl2) that mimic 3D printing scaffolds were prepared, and it was observed that the addition of LNFs improved several properties of the hydrogels, such as the morphology, swelling and degradation profiles, and mechanical properties. All formulations…

Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells

International Journal of Biological Macromolecules 2023 Volume 229, Pages 849-860

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G’) and loss (G”) moduli and the G’ recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness…

Hydrogel Bioinks of Alginate and Curcumin-Loaded Cellulose Ester-Based Particles for the Biofabrication of Drug-Releasing Living Tissue Analogs

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 34, Pages 40898-40912

3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of…