3D Bioplotter Research Papers
Three-Dimensional Printed Bimodal Electronic Skin with High Resolution and Breathability for Hair Growth
People with neurological deficits face difficulties perceiving their surroundings, resulting in an urgent need for wearable electronic skin (e-skin) that can monitor external stimuli and temperature changes. However, the monolithic structure of e-skin is not conducive to breathability and hinders hair growth, limiting its wearing comfort. In this work, we prepared fully three-dimensional (3D) printed e-skin that allowed hair penetration and growth. This e-skin also achieved simultaneous pressure and temperature detection and a high tactile resolution of 100 cm–2, which is close to that of human fingertips. The temperature sensor maintained linear measurements within 10–60 °C. The pore microstructure prepared…
Double-Side-Coated Grid-Type Mechanical Membrane Biosensor Based on AuNPs Self-assembly and 3D Printing
The membrane based on receptor functionalization provides a new paradigm for the development of mechanical biosensors. However, improvement of sensitivity and test accuracy is still a challenge for mechanical biosensors in practical application. Herein, a surface stress mechanical biosensor (MBioS) based on double-side-gold nanoparticale (AuNP)-coated grid-type polydimethylsiloxane (PDMS) membrane (D-G-MBioS) and 3D printing for human serum albumin (HSA) detection is developed. The surface stress is amplified by the grid coupling sandwich immune structure to improve the sensitivity of the MbioS, successfully reducing limite of detection (LOD) by two orders of magnitude. By self-assembly of AuNPs, the double-side-coated PDMS membrane is…