3D Bioplotter Research Papers
3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing
We have printed microscale 3-dimensional tissue scaffolds using cellulose acetate (CA) for the first time and produced a range of pore sizes ranging from 99 to 608 μm that are potentially favorable for tissue engineering. In the process we have elucidated some of the formulation-fabrication-morphology relationships which enabled advancements in ink development, optimization of fabrication parameters, and morphological control. The challenges for printing very small pores were discussed and improved by adjustment of printing conditions and use of a rheological modifier. We believe this study will increase the knowledge base for additive manufacturing of CA and enable further research into the…
Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network
We report herein the fabrication of a pectin-based scaffold (6 wt% pectin, 3 wt% alginate) with high resolution (small-diameter rods), small pores, and interconnected porosity using a low temperature 3D printing process known as freeze-printing. The ability to successfully print natural polymers has been a long-standing challenge in the field of additive manufacturing of polymeric tissue scaffolds. This is due to the slow evaporation rate of the aqueous solvent, which leads to unstable structures. This problem has been addressed by utilizing the fast solidification rate of the freeze-printing process. Scaffolds with a hgresolution (rod-diameter of 83 ± 14 µm), small…