3D Bioplotter Research Papers
Printable Single-Ion Polymer Nanoparticle Electrolytes for Lithium Batteries
New material solutions are searched for the manufacturing and safety of current batteries. Herein, an extrusion printable polymer separator for lithium batteries based on single-ion polymer electrolytes is presented. The polymer electrolytes are based on methacrylic polymeric nanoparticles (NPs) functionalized with a lithium sulfonamide group combined with different organic plasticizers such as sulfolane and carbonates. The synthesis of the polymer NPs is carried out by emulsion copolymerization of methyl methacrylate and lithium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of less than 30 nm, as shown by electron microscopy. Then polymer electrolytes are prepared by mixing…
3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing
Tailor-made polymers are needed to fully exploit the possibilities of additive manufacturing, constructing complex, and functional devices in areas such as bioelectronics. In this paper, the synthesis of a conducting and biocompatible graft copolymer which can be 3D printed using direct melting extrusion methods is shown. For this purpose, graft copolymers composed by conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible polymer polylactide (PLA) are designed. The PEDOT-g-PLA copolymers are synthesized by chemical oxidative polymerization between 3,4-ethylenedioxythiophene and PLA macromonomers. PEDOT-g-PLA copolymers with different compositions are obtained and fully characterized. The rheological characterization indicates that copolymers containing below 20 wt% of…
3D Printable and Biocompatible Iongels for Body Sensor Applications
Soft-ionic materials with biocompatibility and 3D printability are needed to develop next-generation devices to interface between electronic and biological signals. Herein, thermoreversible and biocompatible ionic liquid gels or iongels, which can be processed by direct ink writing are reported. The iongels are designed by taking advantage of polyvinyl alcohol/phenol interactions to gelify biocompatible cholinium carboxylate ionic liquids. The obtained iongels are stable, soft, and flexible materials (Young modulus between 14 and 70 kPa) with high ionic conductivity (1.8 × 10–2 S cm–1). Interestingly, they presented thermoreversible properties with gel–sol transitions ranging from 85 and 110 °C, which allows the iongel…