3D Bioplotter Research Papers

Displaying all papers by F. Pati (4 results)

Formulation of Dermal Tissue Matrix Bioink by a Facile Decellularization Method and Process Optimization for 3D Bioprinting toward Translation Research

Macromolecular Bioscience 2022 Volume 22, Issue 8, Article 2200109

Decellularized extracellular matrices (ECMs) are being extensively used for tissue engineering purposes and detergents are predominantly used for this. A facile detergent-free decellularization method is developed for dermal matrix and compared it with the most used detergent-based decellularization methods. An optimized, single-step, cost-effective Hypotonic/Hypertonic (H/H) Sodium Chloride (NaCl) solutions-based method is employed to decellularize goat skin that resulted in much higher yield than other methods. The ECM composition, mechanical property, and cytocompatibility are evaluated and compared with other decellularization methods. Furthermore, this H/H-treated decellularized dermal ECM (ddECM) exhibits a residual DNA content of <50 ng mg−1 of dry tissue. Moreover, 85.64 ± 3.01% of glycosaminoglycans…

Augmented Repair and Regeneration of Critical Size Rabbit Calvaria Defects with 3D Printed Silk Fibroin Microfibers Reinforced PCL Composite Scaffolds

Biomedical Materials & Devices 2023

Treatment of critical size defects is quite challenging, often requiring autologous bone grafts for bone regeneration. A massive volume of autologous bone is essential during this process to fill the defect leading to donor site morbidity. Although 3D printed PCL scaffolds are frequently utilised for bone correction procedures, there have been reports of delayed PCL biodegradation and inadequate bone tissue formation. To enhance the regenerative potential, in this study, silk in the form of silk fibroin microfibers are reinforced into the PCL matrix to form the composite. Two silk variations were used: Antheraea mylitta and Bombyx mori, and has been…

The effect of the synthetic route on the biophysiochemical properties of methacrylated gelatin (GelMA) based hydrogel for development of GelMA-based bioinks for 3D bioprinting applications

Materialia 2022 Volume 25, Article 101542

Gelatin methacrylate (GelMA) is a widely used biomaterial in tissue engineering and regenerative medicine. GelMA is a chemically modified form of gelatin. Researchers have employed various methods to synthesize GelMA, such as the conventional method (Bulcke et al. 2000), the sequential method (Lee et al. 2015), and facile one-pot (Shirahama et al. 2016) methods to achieve GelMA hydrogels with a wide range of degree of functionalization or methacrylation. However, the impact of these different synthesis methods and their reac- tion parameters on GelMA hydrogels and scaffolds remains to be investigated concerning bioink formulation and 3D printing application. In this study,…

Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone–Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy

ACS Applied Bio Materials 2022 Volume 5, Issue 9, Pages 4465-4479

Regenerative biomaterials play a crucial role in the success of maxillofacial reconstructive procedures. Yet today, limited options are available when choosing polymeric biomaterials to treat critical size bony defects. Further, there is a requirement for 3D printable regenerative biomaterials to fabricate customized structures confined to the defect site. We present here a 3D printable composite formulation consisting of polycaprolactone (PCL) and silk fibroin microfibers and have established a robust protocol for fabricating customized 3D structures of complex geometry with the composite. The 3D printed composite scaffolds demonstrated higher compressive modulus than 3D printed scaffolds of PCL alone. Furthermore, the compressive…