3D Bioplotter Research Papers
Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration
Despite recent advances in extrusion bioprinting of cell-laden hydrogels, using naturally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge. Here, we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure. The tough hydrogels consisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid (o-nitrobenzyl-grafted hyaluronic acid) and elastin through Schiff’s base reaction, and free-radically polymerized gelatin methacryloyl. The incorporation of elastin further improved the elasticity, stretchability (∼170% strain), and toughness (∼45 kJ m−3) of the hydrogels due to the random coiling structure. We used this novel…
Biocompatible scaffolds constructed by chondroitin sulfate microspheres conjugated 3D-printed frameworks for bone repair
Most bone repair scaffolds are multi-connected channel structure, but the hollow structure is not conducive to the transmission of active factors, cells and so on. Here, microspheres were covalently integrated into 3D-printed frameworks to form composite scaffolds for bone repair. The frameworks composed of double bond modified gelatin (Gel-MA) and nano-hydroxyapatite (nHAP) provided strong support for related cells climbing and growth. Microspheres, which were made of Gel-MA and chondroitin sulfate A (CSA), were able to connect the frameworks like bridges, providing channels for cells migration. Additionally, CSA released from microspheres promoted the migration of osteoblasts and enhanced osteogenesis. The composite…
3D Printing Process Research and Performance Tests on Sodium Alginate-Xanthan Gum-Hydroxyapatite Hybridcartilage Regenerative Scaffolds
Cartilage injury is a common occurrence in the modern world. Compared with traditional treatment methods, bio-3D printing technology features better utility in the field of cartilage repair and regeneration, but still faces great challenges. For example, there is currently no means to generate blood vessels inside the scaffolds, and there remains the question of how to improve the biocompatibility of the generated scaffolds, all of which limit the application of bio-3D printing technology in this area. The main objective of this article was to prepare sodium alginate-xanthan gum-hydroxyapatite (SA-XG-HA) porous cartilage scaffolds that can naturally degrade in the human body…
A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair
Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that…
3D Printing and Performance Study of Porous Artificial Bone Based on HA-ZrO2-PVA Composites
An ideal artificial bone implant should have similar mechanical properties and biocompatibility to natural bone, as well as an internal structure that facilitates stomatal penetration. In this work, 3D printing was used to fabricate and investigate artificial bone composites based on HA-ZrO2-PVA. The composites were proportionally configured using zirconia (ZrO2), hydroxyapatite (HA) and polyvinyl alcohol (PVA), where the ZrO2 played a toughening role and PVA solution served as a binder. In order to obtain the optimal 3D printing process parameters for the composites, a theoretical model of the extrusion process of the composites was first established, followed by the optimization…
Stepwise Cross-Linking of Fibroin and Hyaluronic for 3D Printing Flexible Scaffolds with Tunable Mechanical Properties
The development of 3D printing techniques has provided a promising platform to study tissue engineering and mechanobiology; however, the pursuit of printability limits the possibility of tailoring scaffolds’ mechanical properties. The brittleness of those scaffolds also hinders potential clinical application. To overcome these drawbacks, a double-network ink composed of only natural biomaterials is developed. A shear-thinning hydrogel made of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) presents a high mechanical modulus with a low concentration of macromers. The physical cross-linking due to protein folding further increases the strength of the scaffolds. The proposed SF/MAHA scaffold exhibits a storage modulus…
Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration
Meniscus deficiency, the most common and refractory disease in human knee joints, often progresses to osteoarthritis (OA) due to abnormal biomechanical distribution and articular cartilage abrasion. However, due to its anisotropic spatial architecture, complex biomechanical microenvironment, and limited vascularity, meniscus repair remains a challenge for clinicians and researchers worldwide. In this study, we developed a 3D printing-based biomimetic and composite tissue-engineered meniscus scaffold consisting of polycaprolactone (PCL)/silk fibroin (SF) with extraordinary biomechanical properties and biocompatibility. We hypothesized that the meticulously tailored composite scaffold could enhance meniscus regeneration and cartilage protection. Methods: The physical property of the scaffold was characterized by…