3D Bioplotter Research Papers
Advanced Printing Transfer of Assembled Silver Nanowire Network into Elastomer for Constructing Stretchable Conductors
Excellent electrical performance of assemblies of 1D silver nanowires (AgNWs) has been demonstrated in the past years. Up to now, however, there are limited approaches to realize simultaneously deterministic assembly with dense arrangement of AgNWs and desired functional layouts. Herein, an assembly strategy from compressed air-modulated alignment of AgNWs to heterogeneous integration of stretchable sensing devices through printing transfer is proposed. In this process, a convective flow induced by compressed air brings the AgNWs to the air–droplet interface, where the AgNWs are assembled with excellent alignment and packing due to the surface flow, van der Waals, and capillary interactions. Compared…
Water-induced polymer swelling and its application in soft electronics
Polymer blend system has been commonly applied in a wide variety of applications. Herein, we propose to introduce sugar particles to polymer matrix, which results in a controllable polymer swelling under the action of osmotic pressure upon soaking in water. Taking advantage of this economic and environment-friendly, water-induced polymer swelling process, we have fabricated wrinkled conductive films and 3D structures by depositing conductive materials on the swollen polymer substrates for stretchable strain sensing devices. Several commercial silicone elastomers were utilized in the study. Key processing factors affecting the polymer swelling were investigated, including film thickness, sugar concentration, and temperature of…
Silver nanowire-based stretchable strain sensors with hierarchical wrinkled structures
As an engineering frontier, highly stretchable sensors are widely applied in many fields, such as human motion detection, personal healthcare monitoring, and human-machine interactions. In this study, novel silver nanowire (AgNW)-based stretchable sensors with hierarchical wrinkled structures were fabricated through a two-step process, namely water-induced swelling and AgNW deposition. As highly soluble additives, sodium chloride particles were incorporated into the elastomer matrix. Upon soaking in dopamine aqueous solution, significant swelling was introduced onto the elastomer substrate. The dopamine deposition is accompanied with the swelling process, which endows the sample surface with ultra-hydrophilicity. Additionally, the dopamine-modified swollen samples “capture” the nanowires…
Room-temperature polymer-assisted additive manufacturing of microchanneled magnetocaloric structures
Magnetic refrigeration is an energy-efficient, sustainable, environmentally-friendly alternative to the conventional vapor-compression cooling technology. There are several magnetic refrigerator device designs in existence today that are predicted to be highly energy-efficient, on condition that suitable working materials can be developed. This challenge in manufacturing magnetocaloric devices is unresolved, mainly due to issues related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate efficient heat transfer between the solid refrigerant and the heat exchange fluid in an active magnetic regenerator (AMR) cooling device. To address this challenge, a novel extrusion-based additive manufacturing (AM) method has been…
3D Printing of Antibacterial Polymer Devices Based on Nitric Oxide Release from Embedded S-Nitrosothiol Crystals
Controlled release of drugs from medical implants is an effective approach to reducing foreign body reactions and infections. We report here on a one-step 3D printing strategy to create drug-eluting polymer devices with a drug-loaded bulk and a drug-free coating. The spontaneously formed drug-free coating dramatically reduces the surface roughness of the implantable devices and serves as a protective layer to suppress the burst release of drugs. A high viscosity liquid silicone that can be extruded based on its shear-thinning property and quickly vulcanize upon exposure to ambient moisture is used as the ink for 3D printing. S-Nitrosothiol type nitric…
Highly Conductive Silicone Elastomers via Environment-Friendly Swelling and In Situ Synthesis of Silver Nanoparticles
Flexible and stretchable conductors are crucial components for next-generation flexible devices. Wrinkled structures often have been created on such conductors by depositing conductive materials on the pre-stretched or organic solvent swollen samples. Herein, water swelling is first proposed to generate the wrinkled structures on silicone elastomers. By immersing silicone/sugar hybrid in water, a significant amount of swelling occurs as a result of osmosis and capillary interactions with the sugar and silicone matrix. Considering the drastic swelling effect and controllable swelling ratio, water swelling is used to replace the conventional pre-stretching and organic solvent swelling to fabricate stretchable conductors. In situ…
The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs
In the surgical treatment of tuberculosis of the bones, excision of the lesion site leaves defects in the bone structure. Recent research has shown benefits for bone tissue support, such as tricalcium phosphate, as regrowth materials. These biocompatible engineering materials have good bone inductivity and biologic mechanical performance. The goal of this study was to evaluate the use of 3D printing, a new technology, to design and build 3-dimensional support structures for use in grafting at lesion sites and for use in embedding the sustained release anti-tuberculosis drugs Rifampin and Isoniazid and determine the in vivo performance of these structures.…