3D Bioplotter Research Papers

Displaying all papers by M. Feng (3 results)

Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing

International Journal of Biological Macromolecules 2023 Volume 240, Article 124364

Three-dimensional (3D) bioprinting is a promising technique to construct heterogeneous architectures that mimic cell microenvironment. However, the current bioinks for 3D bioprinting usually show some limitations, such as low printing accuracy, unsatisfactory mechanical properties and compromised cytocompatibility. Herein, a novel bioink comprising hydroxyphenyl propionic acid-conjugated gelatin and tyramine-modified alginate is developed for printing 3D constructs. The bioink takes advantage of an ionic/covalent intertwined network that combines covalent bonds formed by photo-mediated redox reaction and ionic bonds formed by chelate effect. Benefiting from the thermosensitivity of gelatin and the double-crosslinking mechanism, the developed bioink shows controllable rheological behaviors, enhanced mechanical behavior,…

Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 20, Pages 24034–24046

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene…

Fuzzy Evaluation of Rapid Prototyping Methods for Latticed Silicone Pieces

Silicon 2020 Volume 12, Pages 1995-2004

In order to compare the influence of the manufacturing methods on the property of silicone samples, the latticed structure of sample are designed, the silicone material is prepared and the silicone sample are produced by 3D printing and injection molding respectively. Four performance indexes of latticed silicone parts including the error of line width, the error of quality, tensile strength at break and elongation at break are proposed and measured. A fuzzy comprehensive evaluation system for evaluating the optimal forming method of the parts is provided. The performance indexes are used as evaluation factors, and the importance degree of the…