3D Bioplotter Research Papers
Multi-Stage Thermal Modelling of Extrusion-Based Polymer Additive Manufacturing
Additive manufacturing is one the most promising fabrication strategies for the fabrication of bone tissue scaffolds using biodegradable semi-crystalline polymers. During the fabrication process, polymeric material in a molten state is deposited in a platform and starts to solidify while cooling down. The build-up of consecutive layers reheats the previously deposited material, introducing a complex thermal cycle with impacts on the overall properties of printed scaffolds. Therefore, the accurate prediction of these thermal cycles is significantly important to properly design the additively manufactured polymer scaffolds and the bonding between the layers. This paper presents a novel multi-stage numerical model, integrating…
Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions
Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC),…
Development of a Photocrosslinkable Methacrylated Methylcellulose and Gelatin bioink for Cartilage Tissue Regeneration
Articular cartilage disease can cause pain, mobility issues, and disability. Clinical treatment includes microfracture, subchondral drilling, graft transplantation, and eventually total joint replacement implant. However, these approaches can present specific problems and limitations. Three-dimensional (3D) bioprinted scaffolds utilising hydrogels can provide a suitable 3D biochemical and biophysical environment, thus is a promising strategy for cartilage tissue therapy and regeneration. This study aims to develop a new hydrogel bioink with improved printability, mechanical, and biological properties for cartilage regeneration. A photocrosslinkable methacrylated methylcellulose (MCMA) and gelatin (GelMA) hybrid bioink is evaluated in this preliminary investigation. The results showed that methylcellulose and…