3D Bioplotter Research Papers

Displaying all papers about Methylcellulose (8 results)

Rapid manufacture of sodium polyaluminate electrolyte ceramics for solid state batteries via direct ink writing

Journal of the European Ceramic Society 2024 Volume 44, Issue 8, Pages 5041-5047

Solid-state electrolyte structures using sodium polyaluminate ceramics, have been fabricated for the first time using direct ink writing; a material extrusion-based additive manufacturing process. A series of test samples were prepared using a high solids loading (80 wt%; 51.2 vol%) ceramic paste formulations with suitable rheological characteristics for 3D printing. Following optimum densification via conventional sintering at 1600 °C for 30 min, the additively manufactured electrolyte test samples exhibited an ionic conductivity of σ = 0.14 ± 0.019 S·cm−1 at 300 °C and density of ρ = 3.1 ± 0.02 g·cm−3 (relative density of 95%). These results suggest that direct ink writing of sodium polyaluminates…

3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing

Acta Biomaterialia 2021 Volume 126, Pages 496-510

3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…

Development of a Photocrosslinkable Methacrylated Methylcellulose and Gelatin bioink for Cartilage Tissue Regeneration

MACE PGR Conference 2020

Articular cartilage disease can cause pain, mobility issues, and disability. Clinical treatment includes microfracture, subchondral drilling, graft transplantation, and eventually total joint replacement implant. However, these approaches can present specific problems and limitations. Three-dimensional (3D) bioprinted scaffolds utilising hydrogels can provide a suitable 3D biochemical and biophysical environment, thus is a promising strategy for cartilage tissue therapy and regeneration. This study aims to develop a new hydrogel bioink with improved printability, mechanical, and biological properties for cartilage regeneration. A photocrosslinkable methacrylated methylcellulose (MCMA) and gelatin (GelMA) hybrid bioink is evaluated in this preliminary investigation. The results showed that methylcellulose and…

Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters

Applied Sciences 2020 Volume 10, Issue 1, Article 292

Extrusion-based bioprinting of hydrogel scaffolds is challenging due to printing-related issues, such as the lack of capability to precisely print or deposit hydrogels onto three-dimensional (3D) scaffolds as designed. Printability is an index to measure the difference between the designed and fabricated scaffold in the printing process, which, however, is still under-explored. While studies have been reported on printing hydrogel scaffolds from one or more hydrogels, there is limited knowledge on the printability of hydrogels and their printing processes. This paper presented our study on the printability of 3D printed hydrogel scaffolds, with a focus on identifying the influence of…

Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration

RSC Advances 2016 Volume 6, Pages 91201-91208

The aim of this study was to synthesize and characterize self-crosslinked bioactive glass/alginate composite scaffolds, as a kind of potential biomaterial for bone regeneration. The scaffolds were fabricated through a self-crosslinking process of alginate by bioactive glass microspheres provided Ca2+ completely, without any organic solvent, crosslinking agent or binder. The microstructure, mechanical properties, apatite-forming ability, ionic release, adhesion, proliferation and ALP activity of human bone marrow-derived mesenchymal stem cells (hBMSCs) of the scaffolds were evaluated. The results showed that uniform films could be obtained on the surface as well as abundant of crosslinking bridges in the interior of scaffolds. The…

Preparation of 3-D scaffolds in the SiO2–P2O5 system with tailored hierarchical meso-macroporosity

Acta Biomaterialia 2011 Volume 7, Issue 3, Pages 1265-1273

Herein we report for the first time the synthesis of three-dimensional scaffolds in the binary system SiO2–P2O5 exhibiting different scales of porosity: (i) highly ordered mesopores with diameters of ca. 4 nm; (ii) macropores with diameters in the 30–80 μm range with interconnections of ca. 2–4 and 8–9 μm; and (iii) ultra-large macropores of ca. 400 μm. The hierarchical porosity of the resulting scaffolds makes them suitable for bone tissue engineering applications. The chemical nature and mesoporosity of these matrices would allow these scaffolds to act as local controlled delivery systems of biologically active molecules, such as certain drugs to…

The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants

Journal of Biomedical Materials Research Part A 2010 Volume 92A, Issue 1, pages 33-42

3D porous Ti6Al4V scaffolds were directly fabricated by a rapid prototyping technology, 3D fiber deposition (3DF). In this study, scaffolds with different structures were fabricated by changing fiber spacing and fiber orientation. The influence of different architectures on mechanical properties and permeability of the scaffold were investigated. Mechanical analysis revealed that compressive strength and E-modulus increase with decreasing the porosity. Permeability measurements showed that not only the total porosity but also the porous structure can influence the permeability. 3DF was found to provide good control and reproducibility of the desired degree of porosity and the 3D structure. Results of this…

Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 127-133

Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…