3D Bioplotter Research Papers

Displaying all papers by R. Spolenak (3 results)

3D-printed tungsten sheet-gyroids via reduction and sintering of extruded WO3-nanopowder inks

Additive Manufacturing 2020 Volume 36, Article 101613

Additive manufacturing of objects with complex geometries from refractory metals remains very challenging. Here, we demonstrate the fabrication of tungsten sheet-gyroids via 3D ink-extrusion of WO3 nano-powder followed by hydrogen reduction and activated sintering with NiO additions, as an alternative route to beam-based additive manufacturing of tungsten and other high melting metals and alloys. The microstructure and mechanical properties of the tungsten sheet-gyroids are measured for various wall architectures and processing conditions. The original gyroid architecture, separating two equally-sized volumes, is modified to achieve double-wall gyroids (with three separate volumes) with higher relative densities. The compressive properties of these single-…

3D ink-printed, sintered porous silicon scaffolds for battery applications

Journal of Power Sources 2021 Volume 507, Article 230298

The fabrication of 3D ink-printed and sintered porous Si scaffolds as electrode material for lithium-ion batteries is explored. A hierarchically-porous architecture consisting of channels (~220 μm in diameter) between microporous Si struts is created to accommodate the large volume change from Si (de)lithiation during electrochemical (dis)charging. The influence of sintering parameters on Si strut porosity and the resulting mechanical and electrochemical properties of the scaffolds are studied experimentally and computationally. Varying sintering temperatures (1150–1300 °C) and sintering times (1–16 h) the open porosity within the Si filaments can be tailored between 46 and 60%. Pore size (3–6 μm) and wall…

Microstructure and Processing of 3D Printed Tungsten Microlattices and Infiltrated W–Cu Composites

Advanced Engineering Materials 2018 Volume 20, Article 1800354

ungsten is of industrial relevance due its outstanding intrinsic properties (e.g., highest melting‐point of all elements) and therefore difficult to 3D‐print by conventional methods. Here, tungsten micro‐lattices are produced by room‐temperature extrusion‐based 3D‐printing of an ink comprising WO3–0.5%NiO submicron powders, followed by H2‐reduction and Ni‐activated sintering. The green bodies underwent isotropic linear shrinkage of ≈50% during the thermal treatment resulting in micro‐lattices, with overall 35–60% open‐porosity, consisting of 95–100% dense W–0.5%Ni struts having ≈80–300 μm diameter. Ball‐milling the powders and inks reduced the sintering temperature needed to achieve full densification from 1400 to 1200 °C and enabled the ink to be extruded…