3D Bioplotter Research Papers
Tyrosinase-doped bioink for 3D bioprinting of living skin constructs
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…
Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions
Degradation of scaffolds is an important problem in tissue regeneration management. This paper reports a comparative study on degradation of the printed 3D poly (lactic-co-glycolic acid) scaffold under three conditions, namely, micro-channel, incubator static, and incubator shaking in the phosphate buffer saline (PBS) solution. In the case of the micro-channel condition, the solution was circulated. The following attributes of the scaffold and the solution were measured, including the mass or weight loss, water uptake, morphological and structural changes, and porosity change of the scaffold and the pH value of the PBS solution. In addition, shear stress in the scaffold under…