3D Bioplotter Research Papers

Displaying all papers by S. Park (3 results)

Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules

Biofabrication 2025 Volume 17, Number 1, Article 015019

Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a…

Icariin-Releasing 3-Dimensionally Printed Scaffolds for Alveolar Cleft Reconstruction

Biomaterials Research 2025 Volume 29, Article 0199

Each year, 1 in every 700 babies is born with an orofacial cleft in the USA. Despite a well-established protocol for early cleft repair, the alveolar cleft persists during craniofacial growth. Current surgical treatments with bone grafts for alveolar cleft often provide inadequate nasal base support and insufficient alveolar bone volume for permanent tooth eruption. Here, we developed 3-dimensionally printed polycaprolactone scaffolds with controlled delivery of icariin (ICA) to facilitate bone reconstruction. After establishing a reliable fabrication process, we determined the optimal loading dose and release kinetics of ICA for induced osteogenic differentiation of bone marrow mesenchymal stem/progenitor cells and…

Bioactive scaffolds integrated with micro-precise spatiotemporal delivery and in vivo degradation tracking for complex tissue regeneration

Engineered Regeneration 2025 Volume 6, Pages 34-44

Three-dimensional (3D) printing has evolved to incorporate controlled delivery systems to guide the regeneration of complex tissues, with limited clinical translation. The challenges include the limited precision in spatiotemporal delivery and poorly understood in vivo scaffold degradation rates. Here, we report auspicious preclinical outcomes in the functional regeneration of temporomandibular joint (TMJ) discs of mini-pigs. TMJ disc has been an extremely challenging target for regenerative engineering given the uniquely heterogeneous matrix distribution and region-variant anisotropic orientation. We optimally implemented advanced 3D printing technologies with micro-precise spatiotemporal delivery to build anatomically correct, bioactive scaffolds with native-like regionally variant microstructure and mechanical…