3D Bioplotter Research Papers
Three-dimensional-printed calcium alginate/graphene oxide porous adsorbent with super-high lead ion adsorption ability in aqueous solution
Using three-dimensional (3D) printing technology, a 3D calcium alginate/graphene oxide (3D CA/GO) adsorbent, with a hierarchical macroporous structure, was successfully constructed. Owing to the optimized construction process, the 3D CA/GO showed an enhanced adsorption capacity (490.2 mg/g at pH = 3.0) for lead (Pb(II)) in aqueous solution, which was two times higher than reported in the literature). Meanwhile, the selective adsorption ratio of 3D CA/GO for Pb(II) reached 99.8% when positive ions occurred. In addition, after eight adsorption–desorption cycles, the adsorption capacity did not experience a significant decrease and the structure remained stable. Meanwhile, the adsorbed Pb(II) could be eluted…
3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation‐related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage‐conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast…
Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration
The aim of this study was to synthesize and characterize self-crosslinked bioactive glass/alginate composite scaffolds, as a kind of potential biomaterial for bone regeneration. The scaffolds were fabricated through a self-crosslinking process of alginate by bioactive glass microspheres provided Ca2+ completely, without any organic solvent, crosslinking agent or binder. The microstructure, mechanical properties, apatite-forming ability, ionic release, adhesion, proliferation and ALP activity of human bone marrow-derived mesenchymal stem cells (hBMSCs) of the scaffolds were evaluated. The results showed that uniform films could be obtained on the surface as well as abundant of crosslinking bridges in the interior of scaffolds. The…