3D Bioplotter Research Papers
A 3D-printed PCL/PEI/DNA bioactive scaffold for chemotherapy drug capture in vivo
Systemic chemotherapy after surgery is necessary to control tumor recurrence, but the severe side effects caused by chemotherapeutic drugs pose a great threat to patients’ health. In this study, we originally develop a porous scaffold used for chemotherapy drug capture by using 3D printing technology. The scaffold is mainly composed of poly (ε-caprolactone) (PCL) and polyetherimide (PEI) with a mass ratio of 5/1. Subsequently, the printed scaffold is modified with DNA through the strong electrostatic integration between DNA and PEI to endow the scaffold with the specific absorption to doxorubicin (DOX, a widely used chemotherapy drug). The results show that…
Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing
Healing of a damaged tendon-to-bone enthesis occurs through the formation of fibrovascular scar tissue with greatly compromised histological and biomechanical properties instead of the regeneration of a new enthesis due to the lack of graded tissue-engineering zones in the interface during the healing process. In the present study, a structure-, composition-, and mechanics-graded biomimetic scaffold (GBS) coated with specific decellularized extracellular matrix (dECM) (GBS-E) aimed to enhance its cellular differentiation inducibilities was fabricated using a three-dimensional (3-D) bioprinting technique. In vitro cellular differentiation studies showed that from the tendon-engineering zone to the bone-engineering zone in the GBS, the tenogenic differentiation…
Switch-on mode of bioenergetic channels regulated by curcumin-loaded 3D composite scaffold to steer bone regeneration
Metabolic energy to steer osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) could be a promising therapeutic target for bone tissue engineering (BTE), but prior knowledge of this issue is limited. To address bone defects with BTE, we customized a three-dimensional (3D)-printed composite scaffold (Cur@MS) to allow the controlled release of curcumin, which could facilitate the “switch-on” mode of Glucose transporter 1 (GLUT1) in BMSCs. Consequently, bioenergetic channels, i.e. glucose uptake, were “switched on” to activate GLUT1-RUNX2 crosstalk, which was closely orchestrated with bone regeneration. Furthermore, curcumin-induced cholesterol/lipid raft (Cho/LR) was a “sensor” to trigger the “switch” (GLUT1) by…
Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks
In this study, we describe the additive manufacturing of porous three-dimensionally (3D) printed ceramic scaffolds prepared with hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), or the combination of both with an extrusion-based process. The scaffolds were printed using a novel ceramic-based ink with reproducible printability and storability properties. After sintering at 1200°C, the scaffolds were characterized in terms of structure, mechanical properties, and dissolution in aqueous medium. Microcomputed tomography and scanning electron microscopy analyses revealed that the structure of the scaffolds, and more specifically, pore size, porosity, and isotropic dimensions were not significantly affected by the sintering process, resulting in scaffolds that…
Effects of 3-dimensional Bioprinting Alginate/ Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells
Abrasive flow machining (AFM) is a nontraditional surface finishing method that finishes complex surface by pushing the abrasive media flow through the workpiece surface. The entrance effect that the material removal increases at the entrance of changing the cross-sectional flow channel is a difficult problem for AFM. In this paper, the effects of media rheological properties on the entrance effect are discussed. To explore the effects of the media’s viscoelasticity on the entrance effect, two sets of media with different viscoelasticity properties are adopted to study their rheological and machining performances in the designed flow channel with a contraction area.…