3D Bioplotter Research Papers
Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models
Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials can be tailored to provide the appropriate combination of these properties through the synergy of materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks physiological relevance and cell binding sites. Collagen, a common component in the extra cellular matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and exhibits sites for cellular binding. This paper presents our…
Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair
With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…