3D Bioplotter Research Papers
3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing
Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…
Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage
Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the…
Biomimetic corneal stroma using electro-compacted collagen
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly,…