3D Bioplotter Research Papers

Displaying all papers by Z. Yu (3 results)

Co-culture bioprinting of tissue-engineered bone-periosteum biphasic complex for repairing critical-sized skull defects in rabbits

International Journal of Bioprinting 2023 Volume 9, Issue 3, Article 698

Tissue engineering based on bioprinting technology has broad prospects in the treatment of critical-sized bone defect. Nevertheless, it is challenging to construct composite tissues or organs with structural integrity. Periosteum and stem cells are important in bone regeneration, and it has been shown that co-culture engineering system could successfully repair bone defects. Here, a strategy of co-culture bioprinting was proposed, and a tissue-engineered bone-periosteum biphasic complex was designed. Poly-L-lactic acid/hydroxyapatite (PLLA/HA) was used to construct the supporting scaffold of bone phase. Gelatin methacryl (GelMA) loaded with rabbit bone mesenchymal stem cells (BMSCs) and periosteum-derived stem cells (PDSCs) were used to…

Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan

Acta Biomaterialia 2016 Volume 46, Pages 112-128

Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively…

Osteosarcoma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel

International Journal of Biological Macromolecules 2023 Volume 252, Article 126391

Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower…